(A few aspects of) Geopolymer durability

Martin CYR
Professor
martin.cyr@insa-toulouse.fr
Geopolymers – aluminosilicates

Precursors
- Metakaolin
- Fly ash
- GGBS
- Silica fume, sediments, etc.

Activator (alkaline solution)
- Alkali hydroxide
- Alkali silicates
- Alkali carbonates
- etc.
Geopolymers – aluminosilicates

MK Metakaolin
F.FA Fly ash (class F)
C.FA Fly ash (class C)
SF Silica fume
GGBS Ground gran. Blastf. slag
OPC Ordinary Portland cement

- More calcium → towards hydraulicity
Geopolymers – aluminosilicates

- Quartz
- Calcite
- Anatase
- Kaolinite
- Mullite

Metakaolin
Geopolymer

Weakly bound water ➔ No hydrates

90% of water lost at 105°C

Pouhet, Cyr, Bucher, CBM 2019

Barbosa et al, 2000
Durability... a huge topic

- Geopolymers: not the same chemistry as Portland cement or alkali-activated slag (calcium-based systems)
 - Different (pore) structure
 - Effects on the durability

- Ageing
 - Stability of the material over time
 - How it will react with its environment

- Structure and composition
 - Amorphous → less stable than some crystalline phases
 - Alkalis → less bounded
 - Porous network → more or less connected
Durability... a huge topic

Weathering

Exposure classes
- Air (CO$_2$, UV...)
- Natural water (leaching...)
- Chemicals (acid, chlorides, sulfates, carbonates...)
- Frost

Sea water
CO$_2$
Natural water
Acid
Frost
Sulfates, carbonates
Durability... a huge topic

Concrete parameters influencing durability
- Porosity
- Permeability

Concrete deterioration
- Internal attacks (alkali–silica reaction (ASR), delayed ettringite formation (DEF))
- Aggressive chemical environments (sulphates, acid)
- Frost (freeze–thaw)
- Mechanical stress (abrasion)

Reinforced concrete deterioration
- Corrosion (carbonation, chlorides)

On pastes

Porous network

H$_2$O/Na$_2$O

<table>
<thead>
<tr>
<th>Φ_w (%) $T_{séchage}=105°C$</th>
<th>14.5</th>
<th>17</th>
<th>20</th>
<th>CEM I 52.5 ($w/c = 0.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49%</td>
<td>53%</td>
<td>56%</td>
<td>44%</td>
</tr>
</tbody>
</table>
Mass ratio **Water/Solid**

- Control of the porosity of the mixture

Effect of water content

Sharp decrease in performance with the addition of water, even worse than for portland cements

Cyr M., The Indian Concrete Journal, 94 (7) (2020) 5-13
Monomodal size distribution of pores?

Porous network

Pouhet, Cyr, Bucher, CBM 2019
SEM observations made on a section obtained by cutting with focused ion beam technique → see inside the material without degrading the porous network

- **Large** pores (200-500 nm macropores), formed by the dissolution of metakaolin during geopolymerization
- **Connected** (?) to each other by an interconnected monomodal fine pores network (10-40 nm mesopores)

Pouhet, Cyr, Bucher, CBM 2019
Porous network

- Consequences? (on pastes)
 - Drying
Consequences? (on pastes)

- Drying
- Leaching

Evolution of pH and composition of the extracted pore solution of geopolymer pastes after 28 days of ageing, and then after 1.5 months contact with deionized water (pH = 6.8)

<table>
<thead>
<tr>
<th>Chemical species</th>
<th>GEO-28D-ENDO (No contact)</th>
<th>GEO-1.5M-W Deionized water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (mmol/L)</td>
<td>Concentration (mmol/L)</td>
</tr>
<tr>
<td>Na⁺</td>
<td>415 ± 12</td>
<td>69 ± 5</td>
</tr>
<tr>
<td>K⁺</td>
<td>3.4</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Si⁴⁺</td>
<td>27 ± 2</td>
<td>20 ± 2</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>< 0.1</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

Benavent, Lahalle, Patapy, Glid, Renaudin, Cyr
Stability of a sodium metakaolin-based geopolymer paste in neutral and CEM V basic environment
Porous network

- Consequences? (on pastes)
 - Drying
 - Leaching
 - Carbonation

Evolution of the pH pore solution in time

- After a year the pH in natural condition is lower: carbonation occurred
- The carbonation is fast and seems to begins from the second day in presence of CO₂
- But the pH remains “high” even after carbonation → less corrosion?
Consequences? (on pastes)

- Drying
- Leaching
- Carbonation (efflorescence)

After 7 days semi-immersed

1 photo every 5 minutes during 48 h

Pouhet, PhD, 2015
Porous network

• Consequences? (on pastes)
 ✓ Drying
 ✓ Leaching
 ✓ Carbonation

Could lead to scaling

Possible to decrease the leaching, for instance by adding small calcium sources (e.g. GGBS...)

Pouhet, PhD, 2015
Porous network

• Consequences? (on pastes)
 ✓ Drying
 ✓ Leaching
 ✓ Carbonation

• But
 ✓ Water permeability K_{water} of 1.4×10^{-18} m2

 ✓ Air permeability (Cembureau) K_{gas} of 10×10^{-18} m2

 Good durability, according to references on Portland cement

Cracking of the paste???
(effect of drying)
Accelerated testing?

• Tests developed for Portland cement
 ✓ Calcium-based cements
 ✓ Chemical equilibrium (with alkalis…)

 e.g. “Cure in water saturated with lime”

Example of accelerated carbonation

Accelerated test

% CO₂

Natural conditions

Bernal et al. 2012
Accelerated testing?

• Tests developed for Portland cement
 ✓ Calcium-based cements
 ✓ Chemical equilibrium (with alkalis…)

Control solution

Accelerated tests
 - Different reaction products
 - Could lead to false conclusions regarding the risk of corrosion

depassivation of steel reinforcements
Accelerated testing?

- Tests proposed in the literature usually require a **preconditioning** of the specimens, especially a drying step at temperatures, ranging from:
 - 45°C (e.g. accelerated carbonation XP-P-18-458, 2008)
 - to 80°C (e.g. gas permeability XP-P-18-463, 2011)
 - or even to 105°C (e.g. porosity NF-P-18-459, 2010)

![Graph showing small increase in compressive strength (CS) with endogenous cure.](image)

62 MPa (28 days) vs. 68 MPa (63 days) with no drying.
• Tests proposed in the literature usually require a **preconditioning** of the specimens, especially a drying step at temperatures, ranging from:

 ✓ 45°C (e.g. accelerated carbonation XP-P-18-458, 2008)
 ✓ to 80°C (e.g. gas permeability XP-P-18-463, 2011)
 ✓ or even to 105°C (e.g. porosity NF-P-18-459, 2010)

No drying: **Endogenous**
Accelerated testing?

- Tests proposed in the literature usually require a **preconditioning** of the specimens, especially a drying step at temperatures, ranging from:
 - 45°C (e.g. accelerated carbonation XP-P-18-458, 2008)
 - to 80°C (e.g. gas permeability XP-P-18-463, 2011)
 - or even to 105°C (e.g. porosity NF-P-18-459, 2010)

No drying: **Endogenous**

40°C **Drying:**

No variation for $T = 40°C$
Accelerated testing?

- Tests proposed in the literature usually require **preconditioning** of the specimens, especially a drying step at temperatures, ranging from:
 - 45°C (e.g. accelerated carbonation XP-P-18-458, 2008)
 - to 80°C (e.g. gas permeability XP-P-18-463, 2011)
 - or even to 105°C (e.g. porosity NF-P-18-459, 2010)

![Graph showing strength loss for T ≥ 50°C](Image)

Strength loss for T ≥ 50°C

<table>
<thead>
<tr>
<th>No drying:</th>
<th>Endogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drying:</td>
<td></td>
</tr>
<tr>
<td>50°C</td>
<td></td>
</tr>
<tr>
<td>125°C</td>
<td>40°C</td>
</tr>
<tr>
<td>105°C</td>
<td>20°C-50%RH</td>
</tr>
<tr>
<td>80°C</td>
<td>20°C-vacuum</td>
</tr>
<tr>
<td>60°C</td>
<td>20°C-95%RH</td>
</tr>
</tbody>
</table>
Tests proposed in the literature usually require a **preconditioning** of the specimens, especially a drying step at temperatures, ranging from:

- 45°C (e.g. accelerated carbonation XP-P-18-458, 2008)
- to 80°C (e.g. gas permeability XP-P-18-463, 2011)
- or even to 105°C (e.g. porosity NF-P-18-459, 2010)
Accelerated testing?

• What was seen
 Trincal, ..., Cyr, CCR 2022
 - Drop in mechanical strength with oven drying at temperatures of 50°C to 125°C
 - Damages correlated with an increase in both MIP porosity and pore size
 - Drying at over 50°C → nano- to micro-cracking

• Recommendations
 Trincal, ..., Cyr, CCR 2022
 Oven drying at a temperature of 40°C appears to provide a good compromise between quite efficient drying and little resulting damage, even if not all free water is removed.
To conclude...

- Geopolymers are very different from Portland cements
- So they must not (always) be analysed the same way

Professor Zapinsky proved that Portland cement is more durable than geopolymers when tested under similar conditions...